Risker efter Fukushimakatastrofen – den extra risken för diabetes överstiger den för strålinducerad cancer

Katastrofen 2011 i Fukushima ledde till såväl ökade risker för sjukdomar såsom oro för ökad förekomst av sjukdomar. Murakami et al rapporterar hur den ökade risken för diabetes efter Fukushimakatastrofen överstiger risken för strålinducerad cancer till följd av strålexposition. Författarna har använt måttet ”loss of life expectancy” (LLE) för att jämföra risken mellan diabetes och strålexposition ledande till cancer.

LLE för diabetes var 4,1 (95% CI:1,4-6,8) x 102 för hela population jämfört med 0,69 (2,5-97,5% percentilen) x 102 för cancer orsakad av exponering för strålning (livstidsdos). Vid subanalyser av åldersgruppen 40-70-åringar var skillnaden ännu större (8,0×102 år jämfört med 0,24×102 år).

Man genomförde även en kostnadseffektivitetsanalys av vidtagna åtgärder mot exponering för strålning (matrestriktioner, dekontaminering, helkroppsmätning mm) med åtgärder för diabetes (hälsokontroller och metforminbehandling). Kostnad för varje räddat levnadsår (cost per life-year saved=CPLYS) var mellan >1 till >4 storleksordningar större för åtgärder vidtagna för att minska strålexpositionen jämfört med standardmässiga hälsoundersökningar och standardbehandling för diabetes.

Vår kommentar: denna artikel lyfter en viktig fråga angående hälsoeffekter till följd av en katastrof med multifaktoriell påverkan på befolkningen (psykisk och fysisk stress, strålning, trauma mm) och vilka möjliga långtidskonsekvenser som  kan uppkomma. Vidare lyfts även den intressanta aspekten om hur de ekonomiska resurserna bör användas på bästa sätt för att minska negativa hälsoeffekter på lång sikt.

Möten 2019: NKS, ConRad, SRP, NSFS, ICRR, ERPW

Många intressanta möten i vår del av världen väntar under 2019:
NKS, 15-16/1, Stockholm, http://www.nks.org
ConRad, 13-16/5, München, https://express.converia.de/frontend/index.php?folder_id=1402
SRP, 21-23/5, Scarborough, https://srp-uk.org/events/SRP2019AnnualConference
NSFS, 10-14/6, Hanaholmen (Helsingfors), http://nsfs.org/?p=1171
ICRR, 25-29/8, Manchester, http://icrr2019manchester.com/
ERPW, 14-18/10, Stockholm, information kommer senare

Fukushima-arbetare död i lungcancer – familjen får kompensation

Olika svenska och internationella nyhetsmedia har nyligen haft notiser med rubriker som ”Fukushima-strålning ledde till dödsfall” (se t ex Aftonbladet 2018-09-05). I artiklarna, som i Sverige oftast refererat till TT-text, har uppgivits att ” Japan har för första gången officiellt medgett att en anställd på det förstörda kärnkraftverket Fukushima avlidit efter att ha utsatts för strålning.” Under rubrikerna har dock ofta framkommit en något mer nyanserad bild, nämligen att en person som varit anställd vid Fukushima Daiichi-kraftverket, och pga det har utsatts för en (effektiv?) stråldos på 195 mSv, har avlidit i lungcancer och att familjen erhållit ekonomisk kompensation.

Vår bedömning: Cancer är en vanlig och naturligt förekommande sjukdom. I stort sett var tredje person i västländerna insjuknar och ungefär var fjärde dör av cancer. Diverse olika miljöfaktorer, bland annat joniserande strålning, kan medföra en måttligt ökad sannolikhet att få cancer. Vad gäller Fukushimaolyckan har FN:s vetenskapliga strålningskommitté UNSCEAR bedömt att man inte kan vänta sig någon statistiskt påvisbar ökning av cancer bland vuxna efter de utsläpp av radioaktivitet som inträffade i anslutning till kärnkraftshaveriet (se vår tidigare SREMC-notis). Den internationella strålskyddskommissionens, ICRP, tumregel är att en stråldos på 1000 mSv väntas, förenklat uttryckt, öka risken för cancerdöd med 5% (egentligen avses detriment, dvs ett sammanvägt värde för dödsfall och icke dödligt insjuknande). En dos på 195 mSv väntas alltså ge knappt 1% ökad risk att dö i någon cancerform. I det aktuella fallet är latenstiden från exponering till konstaterad sjukdom betydligt kortare än de 10-15 år eller mer man skulle vänta sig för en strålningsinducerad lungcancer.

Kompensation för sjukdom som kan ha orsakats av strålning finns i många länder. Reglerna varierar beroende på lokal lagstiftning och förhållanden på arbetsmarknaden. Eftersom det inte går att vetenskapligt bevisa att ett visst enskilt cancerfall betingats av strålning (eller av någon annan faktor som miljö, arv, infektion, etc) brukar reglerna bygga på en bedömning av ”probability of causation”, den Bayesiska sannolikheten att fallet orsakats av strålning. Arbetsmarknadsmyndigheten i USA, NIOSH, bedömer enligt webbdiagram att en stråldos på ca 420 mSv motsvarar en ”probability of causation” på 50% vid upp till 20 års latenstid.

I nationella rättssystem har ofta en sannolikhet på 50% ansetts berättiga till kompensation (alltså långt under de 95% som en forskare normalt skulle betrakta som ”signifikant” stöd för en hypotes). Nationella överenskommelser mellan arbetsmarknadens parter kan vara ännu mer ”generösa”, alltså bevilja ersättning även vid lägre sannolikheter än 50%, vilket t ex är fallet i Storbritannien.

Sammanfattningsvis framstår det alltså som mycket osannolikt (men inte helt omöjligt) att det aktuella dödsfallet i lungcancer hos kärnkraftsarbetaren i Fukushima skulle ha orsakats av den extra stråldos han erhöll i samband med kärnkraftshaveriet. Det hindrar dock inte att beslutet om kompensation sannolikt har följt den japanska arbetsmarknadens regler.

Ny strålskyddslag, strålskyddsförordning och strålskyddsföreskrifter

I Sverige gäller sedan 2018-06-01 en ny strålskyddslag beslutad av riksdagen och en ny strålskyddsförordning beslutad av regeringen. Strålsäkerhetsmyndigheten (SSM) har därför gjort en total översyn av alla sina föreskrifter. Anledningen är att Sverige måste anpassa sitt regelverk till EU:s nya strålskyddsdirektiv från 2013, och det i sin tur har tagits fram p g a den internationella strålskyddskommissionens, ICRP, senaste grundläggande rekommendationer från 2007 (äldre EU-direktiv och svenska lagar och regler byggde på ICRP:s tidigare rekommendationer från 1990).

ICRP-rekommendationens och EU-direktivets syfte är att för människor undvika deterministiska skador och minimera risken för stokastiska skador, samt, som en nyhet för EU, att bevara biologisk mångfald och ekosystem (skydd av naturen fanns med redan i den förra svenska strålskyddslagen). Grundprinciperna är oförändrade (berättigande, skyddsoptimering, dosgränser) och tidigare bedömningar av risknivåer anses i stort sett vara korrekta, med undantag för ögats lins där risken för strålskada är större än man hittills antagit. Skyddstänkandet ska fokuseras på exponeringssituationen (planerad/nöd/befintlig) och skyddsoptimering ska tillämpas fullt ut i alla situationer. Dosrestriktioner ska användas för att undvika orättvisa dosfördelningar som kan följa av okritiskt utförd skyddsoptimering.

Allt detta är väl genomarbetat både i EU-direktivet och den svenska lagen. Det finns också en hel del andra förbättringar i den svenska lagen, t ex gällande ansvarsfrågor, ekonomi och avfall. SSM:s föreskrifter har fått en överskådligare och mer logisk struktur, med fokus på de krav som ställs i fråga om doser, utsläpp, osv i stället för olika verksamheter (sjukvård, kärnkraft osv). De återspeglar också att direktivet föreskriver en avpassad ansats (graded approach), t ex har för enklare och mindre farliga verksamheter tillståndskrav bytts mot enklare anmälningsplikt.

Dosgränsen för ögats lins vid yrkesexponering har skärpts från 150 mSv per år till 20 mSv per år (medelvärde över 5 år, max 50 mSv ett enskilt år). Övriga dosgränser är oförändrade i ICRP:s rekommendationer, men EU-direktivet är på ett par punkter mer restriktivt. Grundregeln för dos vid yrkesexponering har där satts till 20 mSv per år i stället för 100 mSv per 5 år med max 50 mSv ett enskilt år (på lång sikt alltså samma nivå men utan den flexibilitet mellan år som ICRP förordar). Referensnivån för högsta dos vid livräddande insats i nödlägen sätter EU till 500 mSv (i stället för ingen övre gräns för välinformerade frivilliga). Det har tvingat fram motsvarande ändringar i svenska regler.

SSM inbjuder specialintresserade till möten som arrangeras i Stockholm och landsorten med början 24 oktober. Inbjudan har väckt stort intresse och vi rekommenderar alla som vill veta mer att här anmäla sig till SSM.

Vår bedömning: För de flesta av våra följare kommer de nya reglerna inte att betyda stora förändringar under normal verksamhet i planerade situationer. Reglerna medger också en del förenklingar. Den skärpta dosgränsen för ögats lins kommer att ge bättre skydd för t ex läkare som utför interventionell radiologi, till priset av visst extra krångel i en övergångsfas. Att EU, utan något som helst vetenskapligt skäl, valt att avvika från ICRP:s (och tidigare Sveriges) medelvärde över 5 år kan dock medföra onödigt krångel och särskilt för stora arbeten i kärnkraftsindustrin en ökad kollektivdos.

De nya EU-reglerna kan också ställa till bekymmer i nödsituationer. Vi har rådfrågat Jan Johansson, strålskyddsexpert vid SSM, som påpekar att endast frivilliga får delta i räddningsarbete där stråldosen kan överstiga den vanliga yrkesdosgränsen. ”Eftersom dosgränsen för ett enskilt år nu har sänkts från 50 till 20 mSv kan räddningstjänsten tvingas anställa mer personal för att säkra ett tillräckligt antal frivilliga i ett nödläge. Det orsakar också en risk att räddningstjänsten ”ger upp” tidigare vid en stor strålningsolycka”, säger Jan Johansson. Och livräddning blir svårare, fortsätter han: ”Hittills har svenska regler varit att livräddning alltid ska genomföras, av frivilliga förstås, vid kärntekniska och andra radiologiska olyckor”. Den nya referensnivån på 500 mSv kommer att göra att det inte längre är möjligt. Visserligen är det osannolikt att en livräddare faktiskt skulle få en högre dos, men räddningsledare kan komma att tveka inför risken, särskilt som få räddningsledare kan väntas ha tillräcklig specialkunskap och erfarenhet för att bedöma vilka doser en insats kan leda till.”

Organspecifik cancermortalitet – uppdaterade resultat från INWORKS

Vi har tidigare rapporterat om resultat från INWORKS-studien – en internationell kohortstudie av 308 297 kärnkraftsarbetare i Frankrike, USA och Storbritannien. Tidigare rapporter från studien har fokuserat på studiens uppbyggnad, död i icke-cancersjukdom samt cancermortalitet i kohorten. I den sistnämnda rapporten (Richardson et al 2015) noterade man en excess relative rate (ERR) på 47% per Gy (90% CI: 18-79%) för död i solid cancer. I en uppdaterad rapport från början av 2018 (länk) har man nu tittat på mortalitet från olika cancertyper. I kohorten noterades 17 957 dödsfall till följd av cancersjukdom (solida tumörer, data från dödsattester) och de vanligaste formerna utgjordes av lungcancer (5802 fall), tjocktarmscancer (1570 fall) och prostatacancer (1685 fall). Kumulativa doser till utvalda, relevanta organ uppskattades; exv för män fick lunga i medel 22,8 mGy, tjocktarm 22,8 mGy och blåsa (representerar dos till prostata) 23,4 mGy.

I den nu genomförda analysen har man använt sig av två olika statistiska metoder för att uppskatta risken för död i olika cancersjukdomar. Den första metoden var en maximum-likelihood-modell, där man alltså utan några a-prioriantaganden angett de parametervärden (dödsrisker, ERR) som maximerade sannolikheten att få de observerade värdena. Den andra metoden var en hierarkisk Poisson-regressionsmodell, alltså en Bayesiansk ansats som utgick från ett a-priori-antagande om en normalfördelning. Den senare modellen syftade enligt författarna till att ”stabilisera värdena” och fick framför allt betydelse för ovanliga cancerformer.

Vid de vanligaste förekommande cancertyperna gav de två modellerna relativt likvärdiga uppskattningar av cancerdödsrisken. I den första modellen noterades ett positivt samband mellan ERR per Gy av kumulativ dos för död i ett flertal cancrar (bla munhåle, matstrups-, magsäcks-, tjocktarms-, ändtarms-, bukspottkörtel-, lung- och sköldkörtelcancer). Det skattade ERR-värdet var dock negativt för cancer i lever och gallvägar, prostatcancer, blåscancer, njurcancer och hjärntumör. I den andra modellen noterades inga negativa värden och antalet extremvärden tenderade att minska.

ERR per Gy för de vanligaste cancrarna i INWORKS-kohorten var 0,56 för lungcancer, 0,25 för prostatacancer och 0,42 för tjocktarmscancer. Detta är något lägre jämfört med resultaten från Life Span Study av de japanska atombombsöverlevarna där ERR per Gy vid motsvarande sjukdomar beräknats till 0,67; 0,33 samt 0,49.

Vår kommentar: Risker vid exponering för lågdos strålning över lång tid är en intressant fråga. Artikeln är läsvärd och intressant och speglar även problematiken med eventuella okända övriga faktorer som kan påverka risk för cancer. Stråldoserna som rapporteras är generellt sett låga, det är ett begränsat antal fall med de olika sjukdomarna och de vanligaste noterade cancersjukdomarna i kohorten tillhör stora vanliga cancergrupper i samhället. Detta speglar svårigheten med att säkert tolka effekten från dessa mycket låga doser strålning, även i en mycket stor kohort. Svårigheten reflekteras även i författarnas omfattande arbete med förfinade och inte alldeles lättolkade statistiska metoder.

Två spännande webinarier: sköldkörtel; ögats lins

Onsd 19/9 1300-1430: WHO-Rempan webinar RADIATION AND THYROID CANCER

Distinguished speakers (C Reiners, T Bogdanova, N Takamura, S Nestoroska-Madjunaorva, Z Carr, P Willems) will present the state of knowledge and discuss certain aspects of iodine thyroid blocking practices as applied to preparedness and response to radiological and nuclear emergencies. Each speaker will give a 10-15 minute presentation, which will be followed by a question-and-answer period (Q&A). When it’s time, click here to join the meeting. Meeting number (access code) 848 911 916. Questions during the webinar to be e-mailed to rempan@who.int

Torsd 27/9 0600-0900: CNSC-CRPA webinar ICRP EYE DOSE LIMIT

Speakers C Cousins, M-C Cantone, R Beveridge, A Hanu, J Atanackovic. When it’s time, click here to join the meeting, Meeting number (access code) 9511091#. Questions during the webinar to be e-mailed to cnsc.webinar-webinaire.ccsn@canada.ca

Oavsiktlig exponering för strålning vid diagnostisk och interventionell radiologi – guidelines för utredning och förhindrande

Diagnostisk och interventionell radiologi ska inte ge stråldoser som ger negativa hälsoeffekter, men oavsiktlig exponering eller för lång exponering kan dock leda till att patienter oavsiktligt erhåller högre stråldoser än menat. I en artikel från 2017, ett skriftligt resultat av ett möte på IAEA:s högkvarter i mars 2017 med 52 deltagare (radiologer, fysiker, röntgensjuksköterskor, teknologer, administratörer och tillverkare av utrustning) från 25 länder, går man grundligt igenom strategier för att identifiera och förebygga oavsiktliga överexponeringar, vilka oftast dock är mycket låga (74% <1 mSv).

Fokus ligger på exponering från radiologiska interventioner samt från datortomografiska undersökningar (CT). Författarna diskuterar först hudreaktioner som kan uppkomma som en deterministisk effekt efter för hög stråldos, och rekommenderar olika trigger-nivåer för åtgärd (t e x vid noterad huddos 3 Gy eller 60 min fluoroskopitid rekommenderas eventuell uppföljning av patienten; man rekommenderar även olika triggerpunkter under ingreppet för att identifiera individer som kan få 3 Gy eller mer i huddos). Man påpekar också vikten av att personalen har rätt träning och utbildning för att minimera exponeringen.

Artikeln tar även upp stokastiska effekter samt viktiga punkter att överväga vid information till patienten i händelse av att han/hon av misstag erhållit en oavsiktligt hög dos (exv hur effektiv dos kan ”tolkas” gentemot bakgrundsstrålning samt exempel på termer som kan användas vid riskestimeringar; för enskilda vuxna patienter: <0,1 mSv negligerbar, 0,1-1 mSv minimal, 1-10 mSv mycket låg, 10-100 mSv låg, >100 mSv medel). Ett kapitel ägnas dessutom åt oavsiktlig exponering in utero där författarna påpekar att diagnostisk röntgen i princip inte leder till doser som kan ge organ- och mental påverkan (dvs doser >100 mGy). Däremot kan en liten riskökning för cancer senare i livet uppstå och man behöver då göra en beräkning av absorberad dos till embryot/fostret.

Vår kommentar: En tänkvärd artikel vars innehåll man bör ha övervägt innan olyckan är framme. En styrka är att man kan få mycket detaljerade råd vid olika situationer. Artikeln påminner även om att IAEA har en web-baserad internationell databas (SAFRAD dvs Safety in Radiological Procedures) för att samla in data i samband med radiologiska och kardiologiska interventioner där dosnivåerna eller exponeringstiden kommer upp till fördefinierade triggernivåer (se sid 897 i artikeln för definitioner). Där finns även en motsvarande databas SAFRON (Safety in Radiation Oncology) för incidenter i strålbehandling, Båda kan nås via IAEAs utmärkta webbplats för medicinskt strålskydd, https://www.iaea.org/resources/rpop.

Du som läsare kan lämna eventuella kommentarer längre ned på denna sida!

Det lönar sig inte att piska en död häst

Den förhärskande åsikten rörande kärnkraftolyckan i Three Mile Island-verket (Harrisburg, Pennsylvania) 1979 är att denna inte orsakade några hälsoeffekter i befolkningen runt anläggningen. Detta berodde, enligt expertisen, på att utsläppen från TMI-2 begränsade sig till ädelgaser samt en liten andel jod, och resulterande stråldoser blott rörde sig om i genomsnitt mindre än 0,1 mSv och maximalt 1 mSv. Olyckan var kärntekniskt signifikant eftersom det blev en härdsmälta, men ur ren strålskyddssynpunkt begränsade den sig alltså till en arbetsplatsolycka (och även där med låga stråldoser och inga påvisade hälsoeffekter). Som ofta i sådana här sammanhang har det ändå förts fram misstankar om strålningseffekter i befolkningen, dels anknutet till anekdotiska observationer av olika sjukdomar, dels i epidemiologiska studier där man ansett sig ha funnit kluster av cancer. Dock har inga av dessa studier kunnat relateras till några observerade stråldoser.

Norman Aamodt (en pensionerad privatforskare och f d farmare) har i tidskriften Medical Hypotheses hävdat att det i olyckans inledande skede även förekom avsevärda utsläpp av Sr-89 i form av metallpartiklar, och att intag av sådana partiklar kunnat orsaka kroniska stråldoser i storleksordningen 500 mSv. Han menar att detta lett till en allmän överdödlighet på 170 000 fall i nordöstra USA till följd av radiogen immunosuppression samt en överincidens av cancer (”50% mer än väntat”) i Pennsylvania.

Artikeln genererade snabbt ett svar av Alfred Körblein, känd dels som inbiten kärnkraftsmotståndare och dels som omutligt saklig forskare. Han konstaterar att det inte är någon nämnvärt förhöjd cancermortalitet i Pennsylvania jämfört med USA i stort, och avfärdar därför Aamodts hela resonemang.

Vår kommentar: Detta meningsutbyte väcker en del tankar om granskning av nya och uppseendeväckande resultat. När sådana publiceras i ”fel” tidskrift (som i detta fall, där en strålningsvetenskaplig tidskrift hade varit det naturliga valet) bör man dra öronen åt sig. Det kan finnas legitima skäl, t ex tidskriften i fråga kan ligga närmare författarens huvudkompetens – eller, det måste erkännas, det kan vara svårt att få gehör för revolutionerande resultat i ”rätt” facktidskrift. Men det kan också vara så att en artikel refuserats i de ”rätta” fora för att den faktiskt inte håller måttet. En författare kan t o m avsiktligt välja ”fel” tidskrift för att kringgå saklig granskning. I vilket fall bör man vara extra vaksam eftersom redaktionen på ”fel” tidskrift sannolikt har svårare att välja passande reviewers för manusgranskning.

Den första fråga man ställer sig är kanske, ter sig resultaten rimliga? I Aamodts fall verkar det osannolikt att en så stor effekt som 170 000 extra dödsfall skulle ha passerat obemärkt i de dussintals stora epidemiologiska studier som genomförts efter TMI. För cancerincidens för Aamodt ett invecklat resonemang om fluktuerande frekvenser och menar att förekommande ”för låga” frekvenser måste bero på att radiogen immunosuppression lett till förtida död i andra sjukdomar bland personer som annars skulle dött i cancer; Occams rakkniv talar väl snarare för att omväxlande låga och höga frekvenser utgör slumpvariationer. Den påstådda orsaken, betastrålande partiklar, förefaller osannolik (det fanns partikelfilter) men inte totalt omöjlig (det gjordes ofiltrerade utsläpp och betamätningar saknas respektive är opublicerade).

Man kanske också frågar sig om författaren har någon intressekonflikt. Aamodt har inte själv kommenterat den frågan men minnesgoda läsare vet att hans hustru och han redan på 1980-talet bedrivit s k barfotaepidemiologi i syfte att visa på ett påstått canceröverskott efter TMI, och att detta avfärdats av andra forskare och myndigheter.

Till sist: Som ett experiment öppnar vi denna gång också för kommentarer från våra läsare. Vi mottar gärna synpunkter både på möjligheten att kommentera rent generellt, och på notisen ovan!

Förlust av förväntningar på ett långt och lyckligt liv – ett nytt verktyg som använts för att värdera effekter av psykologisk stress efter Fukushimakatastrofen

Joniserande strålning är en riskfaktor dels för akuta strålskador, dels för att utveckla och därmed avlida i cancer. Trots att Fukushimaolyckan innebar en av de största kärntekniska olyckor som förekommit, fick ingen person akuta strålskador och de faktiska stråldoserna som allmänheten erhöll var låga. En av de största lärdomarna efter olyckan har varit de psykologiska konsekvenserna i form av nedstämdhet, depression mm. Frågan är dock hur man på bästa sätt skall skatta denna psykologiska påverkan och hur man skall jämföra den med somatiska risker såsom död i cancer?

Murakami et al publicerade förra året en artikel där man definierat och mätt ”loss of happy life expectancy” (LHpLE) relaterat till Fukushimaolyckan och jämfört detta med den ökade risken att dö i cancer till följd av exponering för strålning (i samband med olyckan). Begreppet ”happy life expectancy” innebär den livslängd som männinskor lever med en subjektiv känsla av välbefinnande (under förutsättningen att ett mål med livet är maximering av lycklig livstid). Således kan begreppet påverkas av både livslängd och lycka. Studien har utförts på 4990 japaner mellan 20 och 69 år som svarat på ett webbaserat formulär som innehöll frågor och skalor om allmän känsla av tillfredsställelse i livet, känslomässigt välbefinnande, subjektiv upplevelse av hälsotillstånd och frågor om psykologisk stress (1080 svar sorterades bort pga otillförlitlighet). Tillika fanns frågor om objektivt hälsotillstånd och socioekonomisk status. Frågeformuläret fylldes i i september 2015, dvs lite mer än 4 år efter olyckan. För att skatta utökad risk för död i cancer användes två olika modeller; en för solida tumörer och en för leukemi och en minimilatensperiod på 5 respektive 2 år användes. Excess relative risk (ERR) för död i cancer beräknades. Två dosscenarier användes; S1 ”det faktiska stråldosscenariot” enligt UNSCEARs bedömning 2014 (total 70-årsdos 30,3 mSv) samt S2 ”referensscenariot” (20 mSv/år det första året och därefter enligt förväntad halveringstid för radioaktivt Cs; total 70-årsdos 242 mSv). Båda scenarierna beaktar såväl extern som intern bestrålning. Doserna i referensscenariot är dock enligt författarna överskattade, bl a eftersom man förutsatt att invånarna återvänt hem efter 2 år och att ingen dekontaminering skett. LHpLE beräknades både för psykologisk stress och för excess risk i cancermortalitet.

Både män och kvinnor visade en signifikant nedgång i känslomässig lycka pga psykologisk stress. LHpLE sågs i samtliga åldersgrupper vid psykologisk stress och var högre i högre åldersgrupper. Vid jämförelse av upplevd LHpLE pga psykologisk stress och faktisk LHpLE pga den verkliga exponeringen för strålning (S1), var den förstnämnda ungefär en storleksordning större för 20-40 åringar och mer än två storleksordningar större för 65-åringar.

Vår kommentar: Artikeln presenterar ett nytt och intressant sätt att värdera effekten av psykologisk stress och framhåller vikten av att ta detta problem på allvar. Den presenterar även ett verktyg som kan vara till hjälp för att objektivt beskriva påverkan av psykologisk stress och jämföra detta mot t e x risk för somatisk sjukdom.

Kyshtym-olyckan – 60 år har gått

År 1957 på hösten skedde två stora olyckor vid radionukleära anläggningar; en i Kyshtym i forna Sovjet och en i Windscale i Storbritannien. Omfattande kontaminering av den omgivande miljön följde. Bägge olyckorna inträffade således för snart 61 år sedan och i Journal of Radiological Protection publicerades nyligen dels en uppdaterad analys av konsekvenserna av Kyshtym-olyckan (Akleyev et al.), dels en kommentar/reflektion från chefredaktören (Wakeford) över bägge olyckorna.

Olyckan i Kyshtym skedde i Mayak nuclear complex i Södra Uralbergen i Ryssland den 29:e september 1957 genom överhettning av en tank för radioaktivt avfall. Detta ledde till en kemisk explosion med spridning av radioaktivt avfall (ca 74 PBq) och kontaminering med radioaktiva ämnen nordöst om anläggningen över ett 300 km långt och 50 km brett område (benämns ofta East Urals Radioactive Trace (EURT) för vilken den officiella gränsen utgörs av kontaminering med minst 2 Ci/km2, d v s 74 GBq/km2). Olyckan har klassats som en INES 6. Tjugotvå bosättningar låg inom EURT och sammanlagt mer än 10 000 personer fick evakueras under de första 2 åren efter olyckan; 2280 personer inom de första 250 dagarna efter olyckan pga deposition av >4 Ci/km2 av 90Sr och höga nivåer av kontaminerad föda.

Initialt utgjordes risken framför allt av markstrålning från i huvudsak 144Ce + 144Pr och 95Zr + 95Nb (1154 personer som evakuerades inom 2v från tre närbelägna byar; husen destruerades) och därefter följde risk för intag av 90Sr via födan. Dosgräns för 90St sattes till 52 kBq/person men kvalitetskontrollen var svår och intaget via födan av radionukliden kom därför att överstiga tillåtna gränser för invånare i vissa bosättningar. För invånarna i de icke-evakuerade områdena vidtogs åtgärder såsom dekontaminering av jorden genom plogning, införande av stora gårdar, begränsning av mjölkproduktionen och förbud mot grönsaks- och spannmålsodling för att minska intag av radionuklider.

I artikeln beskrivs även dosrekonstruktion av såväl interna som externa doser för 21 427 enskilda individer. Dosackumulering beräknades endast för de första två åren efter olyckan. För att beräkna absorberad dos till organ och vävnader utifrån mängd av intag av andra nukleider än strontium användes biokinetiska modeller från ICRP Publication 67 och för motsvarande beräkning för 90Sr användes en speciell ålders- och könsanpassad biokinetisk modell. Dos till magsäck användes för analys av solida cancrar som grupp. Dos till benmärg dominerades av 90Sr (bensökande, >97%) medan dos till övriga organ var betydligt lägre och dominerades av 144Ce (60-70%). Medeldoserna för kohorten var låg (28 mGy för magsäck, 78 mGy för benmärg) och noterade maxdoser för magsäck uppgick till 0,6 Gy och till 1,9 Gy för benmärg.

Hälsoundersökningar med klinisk undersökning, EKG och blodprover för individer i de närmast belägna bosättningarna utfördes inom de första veckorna efter explosionen. Inga fall med akut strålsjuka noterades, men på gruppnivå noterades en nedgång i leukocyter, neutrofiler och trombocyter hos de exponerade jämfört med de icke-exponerade. Uppföljande undersökningar av individer i samma bosättningar utfördes 1-2 år efter olyckan. Man kunde då man inte notera någon kvarstående skillnad vad gäller blodstatus (medelvärden för exponerade resp oexponerade), men det ökade antalet personer med höga leukocyt- och trombocyttal i den exponerade gruppen vittnade om en ”hematologisk återhämtningsfas” för dessa individer. Efter 28 års uppföljning efter olyckan kunde man inte notera någon hälsopåverkan på individer i bosättningar som utsatts för de högsta doserna. Man gjorde även subanalyser på barn (952 individer under 14 år; de flesta mellan 5 och 9 år) och noterade ökad förekomst av infektionssjukdomar hos de med högst exponering.

I en sådan här kohort är naturligtvis analys av cancerrisk av högt intresse. Vid den första analysen av cancermortalitet som undersökte de första 30 åren efter olyckan, kunde man inte notera en statistiskt säkerställd dosberoende risk för död i solida cancrar eller notera någon ökad risk för död i leukemi. Ytterligare en analys, utförd 50 år efter olyckan, när 37% av medlemmarna i kohorten hade avlidit (för 89% av dessa fanns dödscertifikat), klargjorde att de vanligaste dödsorsakerna utgjordes av kardiovaskulära sjukdomar (51%) och cancer (16%) (ffa lungcancer och gastrointestinal cancer). År 2011-12 utfördes individuella dosberäkningar och dos-riskberäkningar. Excess relative risk (ERR) för död i solida cancrar beräknades då till 0,057/100 mGy respektive 0,067/100 mGy för en 5- respektive 10-års latensperiod. Över denna 50-åriga uppföljningsperiod uppskattades att 26 fall av död i cancer (2,5%) kunde associeras med strålexponering. (Man har även tittat på cancerincidens i relation till dos i kohorten).

I den andra artikeln (Wakeford) beskrivs även Windscaleolyckan som skedde samma år i Storbritannien och vid vilken bl a 210Po och 131I släpptes ut. Olyckan klassades som nivå 5 på INES-skalan och vi har tidigare vid två tillfällen rapporterat om COMARE-rapporten som bland annat rör denna olycka.

Vår kommentar:

Dessa två artiklar är båda mycket läsvärda. Akleyev et al ger en gedigen och grundlig bild av de medicinska konsekvenserna av Kyshtym-olyckan. Dosestimeringen som utförts på individnivå visar också på att de absorberade doserna (tack vare vidtagna åtgärder?) varit låga, endast 6% av kohorten fick doser >100mSv. Man kan dock se att det finns osäkerheter i exv diagnostisering av cancersjukdom samt dosestimeringen Författarna påpekar också själva att det finns osäkerheter i estimeringen av individuella doser, till exempel osäkerhet av sammansättningen av radionuklider, variation av deposition i olika byar samt individuella skillnader i intag, biokinetik etc. Kvaliteten på kontrollkohorter är alltid ett problem, inte minst i dåvarande Sovjetunionen med osäker och ofullständig hälsostatistik, men man torde åtminstone kunna vara säker på att Akleyev och medarbetare haft tillgång till den bästa statistik som stått till buds.

Wakeford påpekar sist i sin artikel att trots dessa olyckor som skedde i en tidig era av kärnindustrin har vi inte kunnat förhindra olyckor såsom Tjernobyl och Fukushima, och att det är av största vikt att lära av dessa sällanhändelser för att medvetandegöra vikten av säkerhet.