Nationell handlingsplan för radon

Under våren 2018 färdigställdes en ny ”Nationell handlingsplan för radon”. Denna handlingsplan är framtagen gemensamt av sju myndigheter (SSM, Boverket, Livsmedelsverket, Arbetsmiljöverket, Folkhälsomyndigheten, Sveriges geologiska undersökning och Swedac) och syftar till att minska människors exponering för radon. Handlingsplanen beskriver flera delar, bl a kartläggning av radonhalter i bostadshus och på arbetsplatser, samarbete mellan berörda myndigheter i radonfrågan (koordinerat av SSM) och samordning av deras information om radon, samt att myndigheterna ska samverka för att alla bostadshus ska ha en radonhalt på max 200 Bq/m3. Handlingsplanen beskriver även att man bör genomföra en radonkampanj för att stimulera till mätning av radon och vidtagande av åtgärder för att sänka radonhalten om denna överstiger satta gränser.

Bakgrunden till rapporten är att flera olika aktörer är involverade i radonfrågan och denna nationella handlingsplan syftar till att få ett gemensamt och kraftfullt fokus på radonfrågan för att minska människors exponering och därmed skador av radon. Varje år insjuknar ca 4000 personer i lungcancer i Sverige och av dessa beräknas ca 500 fall bero på radon. Det finns en stark samverkanseffekt mellan rökning och radon vilket speglas i att ca 450 av dessa fall återfinns hos rökare. Högre radondoser medför högre cancerrisker men nedåt finns inget fastställt tröskelvärde under vilket man anser att radon är ofarligt.

Andelen småhus som genomgått mätning av radonhalten i luften är långtifrån heltäckande. Enligt Folkhälsomyndighetens miljöhälsoenkät från 2015 hade endast 32% av småhusen genomgått radonmätning varför det finns stora möjligheter till förbättring avseende mätning och följaktligen radonsanerande åtgärder vid förekomst av för höga radonnivåer. Beräkningar som presenteras i den nationella handlingsplanen för radon visar att på sikt skulle ca 100 lungcancerfall per år kunna förhindras om radonhalten reducerades till maximalt 200 Bq/m3 i bostäder. Idag ligger såväl referensnivån för befintliga bostäder som gränsvärdet för nybyggda bostäder på 200 Bq/m3. Det överensstämmer med kravet i EU:s nu gällande strålskyddsdirektiv 13/59/Euratom, enligt vilket medlemsstaterna ska fastställa nationella referensnivåer på högst 300 Bq/m3, och med WHO:s radonhandbok 2009 där man rekommenderade en gräns på 100 Bq/m3 om möjligt men annars 300 Bq/m3 som inte bör överstigas.

Vår kommentar: En bra konkret handlingsplan där vidtagna föreslagna åtgärder skulle kunna minska risken för exponering för radon och därmed dess skadliga följder.

Individuell, retrospektiv dosimetri – möjligheter och begränsningar

Gästinlägg av Andrzej Wojcik
Professor vid Stockholms universitets institution för molekylär biovetenskap

Vid en okontrollerad strålexposition är det ofta inte möjligt att beräkna individuella absorberade doser baserat bara på kunskap on expositionsscenarion. Bra exempel är sprängning av en ”hemmagjord” kärnladdning som kan leda till flera tusentals expositioner. Alla som befann sig i närheten och överlevde vill veta vilka hälsoeffekter de kan förvänta sig. Effekterna kan beräknas och åtgärder vidtas, men bara om man känner till den absorberade dosen. Här kan individuell, retrospektiv dosimetri hjälpa till.

Tekniken bygger på mätning av strålinducerade skador i kroppen: deras nivå ökar proportionellt med dosen. Med hjälp av en relevant kalibreringskurva går det att uppskatta den absorberade dosen. Tekniken, som även kallas för biologisk dosimetri, används sedan över 50 år. Den ursprungliga metoden bygger på analys av kromosomskador i blodlymfocyter och anses som den biologiska dosimetrins ”guldstandard” för att den tillåter en uppskattning av dosen i dosområden av ca 0,1 till flera Gy upp till några månader efter expositionen. Metoden har använts vid många tillfällen, som Goiania-olyckan 1987 och olyckan vid Boliden Mineral AB 2010.

Problemet är att metoden är tidskrävande. Det tar flera dagar innan dosen till en person kan uppskattas. Vid en stor, radiologisk händelse med kanske flera tusentals drabbade behövs snabbare, så kallade ”high throughput” metoder. På grund av den politiska och sociala utvecklingen finns nu ett reellt hot om en stor radiologisk händelse och följaktligen arbetar många grupper på utveckling av sådana snabba biologiska dosimetrimetoder. Här ligger fokus inte på dosuppskattningens precision utan på hastigheten. Det är viktigt att kunna på ett snabbt sätt sortera ut de drabbade som inte behöver omedelbar medicinisk hjälp och identifiera dem som måste behandlas. Det har visat sig att inte bara kromosomskador i lymfocyter duger som biologisk dosimeter utan även andra mätmetoder kan användas, till exempel analyser av genexpression. Samtidigt tillåter moderna bildanalysmetoder automatisk analys av kromosomskador, så att analysen inte längre är så tidskrävande som vid manuell analys.

Olika grupper i världen har valt olika strategier för att uppfylla ”high throughput” kravet. I USA satsar man på utveckling av helautomatiserade test som kan användas av vilket diagnostiskt laboratorium som helst, utan grundläggande kunskap i strålningsbiologi. Europa, Kanada och Japan går den andra vägen. Här har man bestämt sig för att skapa nätverk av specialiserade laboratorier som vid en stor händelse kommer att dela prover från drabbade personer och analysera dem parallellt. Det europeiska nätverket heter RENEB och information kan hittas under http://www.reneb.net/.

Ett problem är att de flesta europeiska länderna på grund av ekonomiska begräsningar inte finansierar och upprätthåller specialiserade laboratorier för biologisk dosimetri. RENEB:s filosofi är att testa och öva olika mätmetoder som används i laboratorier för att lösa olika forskningsfrågor med biologisk dosimetri (Wojcik et al. 2018 och Kulka et al. 2018). RNEB organiserar regelbundna övningar där bestrålade blodprover skickas ut till nätverket laboratorier för att testa precision dosuppskattningars precision. Just nu kör RENEB en övning med neutroner för att förberedda sig för en nukleär händelse. Planerad är också en gemensam övning med den europeiska dosimetrigruppen EURADOS (http://www.eurados.org/).

Vår kommentar: Kommittén för nukleära olyckor inom det europeiska transplantationsnätverket, EBMT/NAC, poängterar i sin checklista för klinisk handläggning av strålskadade patienter vikten av analys av blodvärden efter exponering (dvs differentialräkning av koncentrationen av blodceller, och särskilt lymfocyter) – åtgärder som i olyckssituationen lämpligen kombineras med någon eller några av det flertal möjligheter som tas upp ovan.

Hur stor är risken, och vad är egentligen ”detriment”?

När man planerar skydd mot strålning brukar man använda Internationella strålskyddskommissionens, ICRP:s, tumregel att en effektiv kollektivdos på 1 Sv (=1000 mSv) vid låg dosrat och låga persondoser beräknas ge ett ”detriment” på 5%. Vi får ofta frågor om vad det betyder, hur det har räknats fram och hur det förhåller sig till risker för specifika cancerformer (som i epidemiologiska undersökningar ofta presenteras som ”excess relative risk, ERR”).

Grovt förenklat (mycket grovt!) innebär tumregeln att 1 Sv ger en dödssannolikhet (excess absolute risk, EAR) på 5%, alltså att 20 Sv leder till i genomsnitt ett extra dödsfall i en grupp som fått denna effektiva kollektivdos. Flera förenklingar är inblandade. Detrimentet är ett genomsnitt för samtliga cancerformer samt genetiska skador, och innefattar inte bara faktiska dödsfall, utan också cancer och genetiska skador som man överlevt, fast med lägre vikt än ett dödsfall. Och detrimentet gäller för en person från ett genomsnittligt land, med genomsnittlig ålder och genomsnittligt kön…

Begreppet detriment beskrevs 1977 av ICRP som väntevärdet för strålskada med hänsyn både till skadans sannolikhet och dess svårighetsgrad. Det är sedan 1990 formellt definierat som (dödsfallsfrekvens + överlevandefrekvens*lidandefaktor) * relativ livslängdsförlust.

ICRP:s nuvarande beräkning av detriment, i ICRP P103, utgår från livstidsrisken för strålningsinducerad cancer (incidens) eller, i gonader, genetisk skada. Man beaktar 14 olika vävnads- och organgrupper, baserat främst på data för japanska atombombsöverlevare men även många andra studier.

  • Utgångspunkt: Incidensdata. För varje vävnad/organ tar man fram riskuppskattningar per Sv som ett genomsnitt för båda könen och för olika åldrar vid exponering, utifrån både absoluta och relativa dosresponsmodeller. Mer, och nyare, grunddata tillkommer förstås kontinuerligt.
  • Låg dosrat och låga persondoser. Eftersom epidemiologiska studier brukar avse ganska höga doser tillämpar man DDREF, en bedömd ”Dose and Dose-Rate Effectiveness Factor”, genom att halvera riskuppskattningarna (utom för leukemi där man förutsätter en linjärkvadratisk dosrespons vilket redan beaktar DDREF). Valet av DDREF är särskilt omdiskuterat; ICRP P103 påpekar att dess DDREF för strålskydd ”is a broad judgement which embodies elements of both subjectivity and probabilistic uncertainty”.
  • Olika befolkningsgrupper. Den spontana incidensen av cancer i olika organ varierar mellan populationer (t ex magcancer är vanligare i Asien). Därför konstruerar man en genomsnittlig populationsrisk, byggd på 7 olika asiatiska och västerländska befolkningar för vilka det finns tillförlitlig cancerstatistik. Där har man tillämpat olika dosresponsmodeller för olika vävnader: EAR för bröst och benmärg/leukemi, ERR för sköldkörtel och hud, vägda medelvärden med 70% EAR och 30% ERR för lunga och 50:50% för övriga vävnader/organ. Metoden och valda värden är inte självklara och ändrade värden kan få stor effekt på den slutligt beräknade risken.
  • Nominella genomsnittliga incidenser. Man får då fram en uppsättning nominella riskkoefficienter (t ex 1,14% för lungcancer och 0,2% för observerbar genetisk skada i följande två generationer). Summerat över alla vävnader/organ blir den nominella genomsnittliga riskkoefficienten 17,15% – d v s, i en population med 10 000 personer av genomsnittlig härkomst, kön och ålder väntas en effektiv kollektivdos om 1 Sv, med låg dosrat och låga persondoser, orsaka 1715 extra fall av insjuknande i cancer eller genetisk skada.
  • Från incidens till mortalitet. Frekvensen faktiska dödsfall erhålls genom att ICRP multiplicerar de nominella riskkoefficienterna med letalitetsfraktioner enligt statistik från cancerregister (t ex 0,89 för lungcancer och 0,07 för sköldkörtelcancer). Letalitetsfraktionerna sjunker dock allteftersom behandlingsmetoder blir både bättre och mer allmänt tillgängliga.
  • Viktning av lidandet för överlevande. Cancer, eller genetisk sjukdom, innebär ett lidande även för den som överlever. ICRP ansätter här först en subjektivt vald minsta koefficient för lidande: att överleva antas motsvara minst 0,1 dödsfall (utom för hud, där joniserande strålning enbart orsakar lätt botad basalcellscancer och miniminivån satts till 0, och för sköldkörtel, där miniminivån av ospecificerad orsak satts till 0,2). Till denna minsta koefficient adderar ICRP letalitetsfraktionen gånger överlevnadsfrekvensen, eftersom cancer med hög dödlighet torde upplevas som mer skrämmande. Summan (t ex för lunga 0,901, för sköldkörtel 0,253) multipliceras med frekvensen överlevande för aktuell vävnad/organ (t ex för lunga 0,901 * 1,14% nominell incidens * (1 – letalitetsfraktionen 0,89) = 0,113%. Med andra ord, en person som överlevt lungcancer anses motsvara 0,9 dödsfall, medan den som överlevt sköldkörtelcancer bara anses motsvara 0,25 dödsfall. Som ICRP framhåller är detta en subjektiv bedömning.
  • Dödsfall plus viktade överlevarfall. Därpå summeras frekvensen faktiska dödsfall (t ex för lunga 1,14% nominell incidens * letalitetsfraktionen 0,89 = 1,015%) och den vägda frekvensen överlevande omräknat till motsvarande antal ”dödsfall” (t ex för lunga 0,113% enligt ovan). Summan anger frekvensen nominella ”dödsfall” (t ex för lunga 1,128%).
  • Förlorade levnadsår. Olika cancerformer drabbar i genomsnitt vid olika åldrar och sjukdomsförloppet fram till dödsfall tar olika lång tid. Den summerade frekvensen nominella ”dödsfall” multipliceras därför med en koefficient som anger det relativa medelantalet förlorade levnadsår (medelantalet förlorade år för skada i aktuell vävnad/organ dividerat med medelantalet år för alla vävnader/organ, t ex för lunga 0,80). Detta ger ett justerat detriment för organet ifråga (t ex för lunga enligt ovan 1,128% nominella ”dödsfall” * relativ förlust av levnadsår 0,8 = 0,902% slutligt vägda nominella ”dödsfall”). Även denna vägning innebär en subjektiv bedömning.
  • Totalt detriment. Till sist summeras detrimenten för de 14 bedömda vävnaderna/organen. Summan blir 5,74% vilket i ICRP:s sammanfattande tabell anges som 5,7% vid 1 Sv för hela befolkningen (och 4,2% för vuxna i arbetsför ålder). ICRP poängterar att decimalerna används i beräkningar men att resultatet inte har den precisionen, utan i praktiskt prospektivt strålskyddsarbete kan 5% användas som en tumregel.

Vår kommentar: Som framgått är beräkningarna varken enkla eller värderingsfria, och en del av ingångsdata ändrar sig med tiden och medicinska framsteg. Det har också visat sig svårt att exakt reproducera en del av beräkningarna utifrån givna data. En arbetsgrupp inom ICRP ser för närvarande över hela konceptet för att göra det begripligare, ta hänsyn till nya rön, samt öka spårbarhet och transparens. Vi planerar att återkomma här när arbetsgruppens förslag går ut på remiss.

Internationella strålskyddskommissionen ICRP och Internationella strålmåttskommissionen ICRU 90 år – jubileumssymposium på Strålsäkerhetsmyndigheten

År 2018 firade dessa båda kommissioner sina 90-årsjubileer i Stockholm, eftersom de båda officiellt påbörjade sitt arbete vid den andra Internationella Radiologikongressen som hölls just i Stockholm 1928. För att fira denna tilldragelse arrangerade Strålsäkerhetsmyndigheten (SSM) i oktober tillsammans med ICRP och ICRU ett mycket uppskattat symposium. Där belystes 90 års framsteg inom strålningsforskning och strålskydd, med fokus mot framtiden och kommande utveckling inom vetenskap och samhälle.

Programmet omfattade ett femtontal föredrag av framträdande experter från ICRP och ICRU (och på ett hörn även KcRN) och flera paneldiskussioner. Symposiet lockade flera hundra deltagare från Sverige och andra länder. Programmet presenteras, och nästan samtliga presentationer kan laddas ner, från den engelska delen av SSM:s webbplats.

Vår kommentar: Vi rekommenderar verkligen starkt ett studium av de aktuella presentationerna. Vi lärde oss själva mycket under symposiets två dagar och det känns betryggande att SSM kan och vill ordna evenemang av den här kalibern.

 

Ny IAEA-guide: När upphör ett nödläge?

En av många utmaningar för myndigheter som förbereder sig för nukleära eller radiologiska nödsituationer handlar om avslutningen: När ska man formellt avsluta en nödsituation? Hur ska övergången till ett ”normalt” tillstånd bäst skötas, och är det ”normala” att det uppkommer en befintlig exponeringssituation (”omgivning med joniserande strålning” enligt svensk förordningsnomenklatur) eller att man återgår till en planerad exponeringssituation (”verksamhet med joniserande strålning”)? En ny säkerhetshandbok från IAEA, GSG 11, ger vägledning och rekommendationer om dessa viktiga och svåra frågor, för vilka det hittills inte funnits särskilt mycket internationella råd.

Handboken ger vägledning om ämnen som hur man bestämmer när man ska lyfta skyddsåtgärder som införts under nödläget, inklusive evakueringar och begränsningar av konsumtionen av lokala produkter. Den stöder nationella myndigheter i att utveckla arrangemang för sådana beslut som en del av deras övergripande beredskapsinsats. Texten innehåller både utförliga resonerande delar om problem och målkonflikter, och ganska ingående tekniska råd t ex om operativa åtgärdsnivåer (operational intervention levels, OIL). Fyra konkreta exempel presenteras också utförligt, nämligen Fukushima-olyckan och Goîania-händelsen som båda genererade befintliga exponeringssituationer samt Paks-transportolyckan och Hueypoxtla-stölden av en terapistrålkälla, vilka båda slutade med återgång till en planerad exponeringssituation.

Med denna handbok underlättas genomförandet av kraven i IAEA:s ”Safety Standards” GSR 7 om beredskap och GSR 3 om strålsäkerhet. Utbildningsmaterial om GSG 11 kommer att publiceras under kommande månader.

Vår bedömning: Handboken avser att avhjälpa en skriande brist på vettiga råd. Efter såväl Tjernobyl som Fukushima har det uppstått besvärliga problem både med att rent formellt avgöra att ett nödläge upphört, och med att hantera den uppkomna ”befintliga” exponeringssituationen. Den Internationella strålskyddskommissionen, ICRP, hade strax före Fukushima i sin Publikation 111 tagit upp dessa frågor, men har sedan konstaterat att ytterligare och delvis modifierad vägledning uppenbarligen behövdes. Arbete med att uppdatera ICRP-rapporten pågår, och det är på ett sätt synd att IAEA fullföljt den här handboken utan att invänta ICRP som kan arbeta friare än IAEA. Å andra sidan är behovet av råd verkligen stort och med tanke på risken för kommande nukleära och radiologiska händelser ska vi nog vara tacksamma att IAEA slutfört sitt arbete så snabbt, och därigenom inte har låtit det bästa bli det godas fiende.

Jämförelse av uppfattning av risker och tolkning av information – en uppföljning av Fukushima

Murakami och medarbetare har i en serie studier analyserat olika aspekter av Fukushima-olyckan och dess följder. I en sådan uppföljningsartikel är bakgrunden behovet att förstå hur befolkningen uppfattar och tolkar information om jämförelse mellan olika risker. Spridning och tolkning av information är idag mycket väsentliga vid katastrofer. Givet det snabba flöde som sker via sociala medier är det av yttersta vikt att ta reda på hur man bäst kommunicerar evidensbaserade data om risker med befolkningen och hur sådan information uppfattas och tolkas av mottagarna.

I denna studie mätte man hur invånare i Fukushima, Tokyo och Osaka tolkade risker med intag av radionuklider via födan, uppdelat i ”dread risk” (risk som uppfattas som hotfull, okontrollerbar osv så att man är angelägen att risken reduceras) samt ”unknown risk” (en tidigare okänd fara där det inte finns någon vetenskaplig uppskattning av riskens storlek). N= 9249 personer mellan 20-69 år deltog via webformulär i studien). Sociala och geografiska karaktäristika bokfördes och kunde sedan användas vid utvärdering av hur man uppfattat information och jämförelse av risker (förståelse, uppfattad riskstorlek, uppfattad exakthet av given information mm). Uppfattningen av ”dread risk” var högre hos dem som evakuerats (frivilligt eller obligatoriskt) och de primära faktorerna som påverkade detta var avstånd från kärnkraftverket, evakuering, förtroende för information från de centralt styrande.

Vår kommentar: Denna artikel har undersökt ett komplext ämne och är något svårläst. Den har dock viktiga poänger; bl a att författarna fann att förtroende för information som kommer från centrala myndigheter är en viktig faktor för att kunna göra en adekvat tolkning av risk. Detta belyser vikten av att ha goda kommunikationsvägar och tydliga budskap från centrala myndigheter vid en katastrof, framför allt om den involverar joniserande strålning vilket ofta är ett okänt och stigmatiserat ämne.

 

Risker efter Fukushimakatastrofen – den extra risken för diabetes överstiger den för strålinducerad cancer

Katastrofen 2011 i Fukushima ledde till såväl ökade risker för sjukdomar såsom oro för ökad förekomst av sjukdomar. Murakami et al rapporterar hur den ökade risken för diabetes efter Fukushimakatastrofen överstiger risken för strålinducerad cancer till följd av strålexposition. Författarna har använt måttet ”loss of life expectancy” (LLE) för att jämföra risken mellan diabetes och strålexposition ledande till cancer.

LLE för diabetes var 4,1 (95% CI:1,4-6,8) x 102 för hela population jämfört med 0,69 (2,5-97,5% percentilen) x 102 för cancer orsakad av exponering för strålning (livstidsdos). Vid subanalyser av åldersgruppen 40-70-åringar var skillnaden ännu större (8,0×102 år jämfört med 0,24×102 år).

Man genomförde även en kostnadseffektivitetsanalys av vidtagna åtgärder mot exponering för strålning (matrestriktioner, dekontaminering, helkroppsmätning mm) med åtgärder för diabetes (hälsokontroller och metforminbehandling). Kostnad för varje räddat levnadsår (cost per life-year saved=CPLYS) var mellan >1 till >4 storleksordningar större för åtgärder vidtagna för att minska strålexpositionen jämfört med standardmässiga hälsoundersökningar och standardbehandling för diabetes.

Vår kommentar: denna artikel lyfter en viktig fråga angående hälsoeffekter till följd av en katastrof med multifaktoriell påverkan på befolkningen (psykisk och fysisk stress, strålning, trauma mm) och vilka möjliga långtidskonsekvenser som  kan uppkomma. Vidare lyfts även den intressanta aspekten om hur de ekonomiska resurserna bör användas på bästa sätt för att minska negativa hälsoeffekter på lång sikt.

Möten 2019: NKS, ConRad, SRP, NSFS, ICRR, ERPW

Många intressanta möten i vår del av världen väntar under 2019:
NKS, 15-16/1, Stockholm, http://www.nks.org
ConRad, 13-16/5, München, https://express.converia.de/frontend/index.php?folder_id=1402
SRP, 21-23/5, Scarborough, https://srp-uk.org/events/SRP2019AnnualConference
NSFS, 10-14/6, Hanaholmen (Helsingfors), http://nsfs.org/?p=1171
ICRR, 25-29/8, Manchester, http://icrr2019manchester.com/
ERPW, 14-18/10, Stockholm, information kommer senare

Fukushima-arbetare död i lungcancer – familjen får kompensation

Olika svenska och internationella nyhetsmedia har nyligen haft notiser med rubriker som ”Fukushima-strålning ledde till dödsfall” (se t ex Aftonbladet 2018-09-05). I artiklarna, som i Sverige oftast refererat till TT-text, har uppgivits att ” Japan har för första gången officiellt medgett att en anställd på det förstörda kärnkraftverket Fukushima avlidit efter att ha utsatts för strålning.” Under rubrikerna har dock ofta framkommit en något mer nyanserad bild, nämligen att en person som varit anställd vid Fukushima Daiichi-kraftverket, och pga det har utsatts för en (effektiv?) stråldos på 195 mSv, har avlidit i lungcancer och att familjen erhållit ekonomisk kompensation.

Vår bedömning: Cancer är en vanlig och naturligt förekommande sjukdom. I stort sett var tredje person i västländerna insjuknar och ungefär var fjärde dör av cancer. Diverse olika miljöfaktorer, bland annat joniserande strålning, kan medföra en måttligt ökad sannolikhet att få cancer. Vad gäller Fukushimaolyckan har FN:s vetenskapliga strålningskommitté UNSCEAR bedömt att man inte kan vänta sig någon statistiskt påvisbar ökning av cancer bland vuxna efter de utsläpp av radioaktivitet som inträffade i anslutning till kärnkraftshaveriet (se vår tidigare SREMC-notis). Den internationella strålskyddskommissionens, ICRP, tumregel är att en stråldos på 1000 mSv väntas, förenklat uttryckt, öka risken för cancerdöd med 5% (egentligen avses detriment, dvs ett sammanvägt värde för dödsfall och icke dödligt insjuknande). En dos på 195 mSv väntas alltså ge knappt 1% ökad risk att dö i någon cancerform. I det aktuella fallet är latenstiden från exponering till konstaterad sjukdom betydligt kortare än de 10-15 år eller mer man skulle vänta sig för en strålningsinducerad lungcancer.

Kompensation för sjukdom som kan ha orsakats av strålning finns i många länder. Reglerna varierar beroende på lokal lagstiftning och förhållanden på arbetsmarknaden. Eftersom det inte går att vetenskapligt bevisa att ett visst enskilt cancerfall betingats av strålning (eller av någon annan faktor som miljö, arv, infektion, etc) brukar reglerna bygga på en bedömning av ”probability of causation”, den Bayesiska sannolikheten att fallet orsakats av strålning. Arbetsmarknadsmyndigheten i USA, NIOSH, bedömer enligt webbdiagram att en stråldos på ca 420 mSv motsvarar en ”probability of causation” på 50% vid upp till 20 års latenstid.

I nationella rättssystem har ofta en sannolikhet på 50% ansetts berättiga till kompensation (alltså långt under de 95% som en forskare normalt skulle betrakta som ”signifikant” stöd för en hypotes). Nationella överenskommelser mellan arbetsmarknadens parter kan vara ännu mer ”generösa”, alltså bevilja ersättning även vid lägre sannolikheter än 50%, vilket t ex är fallet i Storbritannien.

Sammanfattningsvis framstår det alltså som mycket osannolikt (men inte helt omöjligt) att det aktuella dödsfallet i lungcancer hos kärnkraftsarbetaren i Fukushima skulle ha orsakats av den extra stråldos han erhöll i samband med kärnkraftshaveriet. Det hindrar dock inte att beslutet om kompensation sannolikt har följt den japanska arbetsmarknadens regler.