ICRP vill ha synpunkter på råd angående nukleära olyckor

Den internationella strålskyddskommissionen, ICRP, gav 2009 ut
P 109 om Protection of people in emergency exposure situations, och
P 111 om Protection of people living in long-term contaminated areas after a nuclear accident or a radiation emergency.

Erfarenheter som vunnits genom Fukushima-olyckan har föranlett en översyn av dessa båda publikationer, och ett förslag till nya råd finns nu för kommentarer på
http://www.icrp.org/consultations.asp

Alla som är intresserade av strålsäkerhetsfrågor är välkomna att lämna synpunkter via ICRPs webbplats  fram till 25 oktober 2019.

Public Health England; uppdaterad handbok vid CBRN-händelser

Public Health England har givit ut en ny upplaga av handbok vid CBRN-händelser
för kliniskt omhändertagande/förvaltning vid CBRN-händelser.

Detta är en översyn av de råd som ursprungligen publicerades 2006 av Health Protection Agency, en föregångare för Public Health England, under titeln ”CBRN incidents: clinical management and health protection”.

Avsnittet som behandlar strålningsincidenter har skrivits om för att integrera den väletablerade, kliniskt mycket användbara “pocket-guiden” som uppdaterats 2017 av europeiska samfundet för blod- och benmärgstransplantation (EBMT) via sin Nuclear Accident Committee (NAC) och i samarbete med franska IRSN och Ulms universitet i Tyskland. Detta utvärderingsverktyg med vårdvägar härrör från WHO:s globala konsensusriktlinjer för strålskada. Vi har tidigare rapporterat om denna pocket-guide som nu finns i en nedladdningsbar version.

Målgruppen för handboken är blåljuspersonal, akutavdelningar samt hälso-och sjukvårdspersonal.

Avsnittet om strålning börjar med en översikt där man på ett kort och lättförståeligt sätt beskriver joniserande strålning, exponering och kontaminering, att mäta radioaktivitet och strålning samt doser och dosgränser.
Liksom vid alla ovanliga händelser så är det viktigt att påminna sig om när man bör  tänka att det kan handla om strålexponering. Skada orsakad av exponering för joniserande strålning kan uppstå från antingen effekter som dödar celler och orsakar skador på vävnader och organ i kroppen (deterministisk skada) eller skada på genetiskt material som ökar de långsiktiga riskerna för att utveckla cancer och ärftliga effekter (stokastisk risk).

Deterministisk skada ska misstänkas vid:

  • nydiagnostiserad akut benmärgsdepression (leukopeni: infektion; trombocytopeni: blödande tandkött, näsblödning, blåmärken).
  • “brännskador”, erytem eller blåsor utan känd exponering för värme eller kemiska ämnen.
  • plötslig, snabb hårförlust, ffa om det finns en historia som innefattar oförklarligt illamående och kräkningar +/- diarré, två till fyra veckor före start.
  • incident som involverar en bomb eller annan avsiktligt placerad explosiv enhet.

En akut strålskada innebär exponering för en effektiv dos >1 Sv. Stokastiska effekter förekommer inte akut, men ger en ökad livstidsrisk att utveckla cancer och man anger ca 5% per Sv effektiv dos över den normala ständigt närvarande risken.

De flesta akuta strålskador består av partiella kroppsskador (tidiga erytem följt av blåsor och, om allvarligare tillstånd, ulceration och nekros) och är inte associerade med akut strålsjuka, ARS (acute radiation syndrome).
Symtom på akut strålskada, precis som för akut strålsjuka genomgår fyra faser: Prodromal fas -> Latent fas -> Manifest sjukdom -> Återhämtning/Död. De olika fasernas längd varierar beroende på skadans allvarlighetsgrad.

De initiala symtomen på akut strålskada är ospecifika och sällan direkt livshotande, därför har andra skador prioritet.
Om inga symptom uppkommit inom 6 timmar efter misstänkt exponering (dvs illamående, kräkningar), är allvarlig strålskada osannolik. Man poängterar också att personer med akut strålskada bör tas om hand i ett multidiciplinärt team innefattande olika specialister såsom specialist i strålningsmedicin, sjukhusfysik, hematologi, gastroenterologi, plastikkirurgi osv.
För att uppnå bästa möjliga resultat krävs behandling med cytokiner och en omfattande stödjande behandling.
Säkerhet för personalen och hur patienter bör prioriteras beskrivs i ett av avsnitten.

Vår kommentar: Sidorna som behandlar strålning är, liksom EBMT:s pocket guide, mycket användarvänliga. Den nu beskrivna handboken har förutom sidorna med korta grundläggande förklaringar och scoringtabell (se EBMT pocket-guide) även ett flödes-schema för triagering som kan vara värt att titta på.

Individuell, retrospektiv dosimetri – möjligheter och begränsningar

Gästinlägg av Andrzej Wojcik
Professor vid Stockholms universitets institution för molekylär biovetenskap

Vid en okontrollerad strålexposition är det ofta inte möjligt att beräkna individuella absorberade doser baserat bara på kunskap on expositionsscenarion. Bra exempel är sprängning av en ”hemmagjord” kärnladdning som kan leda till flera tusentals expositioner. Alla som befann sig i närheten och överlevde vill veta vilka hälsoeffekter de kan förvänta sig. Effekterna kan beräknas och åtgärder vidtas, men bara om man känner till den absorberade dosen. Här kan individuell, retrospektiv dosimetri hjälpa till.

Tekniken bygger på mätning av strålinducerade skador i kroppen: deras nivå ökar proportionellt med dosen. Med hjälp av en relevant kalibreringskurva går det att uppskatta den absorberade dosen. Tekniken, som även kallas för biologisk dosimetri, används sedan över 50 år. Den ursprungliga metoden bygger på analys av kromosomskador i blodlymfocyter och anses som den biologiska dosimetrins ”guldstandard” för att den tillåter en uppskattning av dosen i dosområden av ca 0,1 till flera Gy upp till några månader efter expositionen. Metoden har använts vid många tillfällen, som Goiania-olyckan 1987 och olyckan vid Boliden Mineral AB 2010.

Problemet är att metoden är tidskrävande. Det tar flera dagar innan dosen till en person kan uppskattas. Vid en stor, radiologisk händelse med kanske flera tusentals drabbade behövs snabbare, så kallade ”high throughput” metoder. På grund av den politiska och sociala utvecklingen finns nu ett reellt hot om en stor radiologisk händelse och följaktligen arbetar många grupper på utveckling av sådana snabba biologiska dosimetrimetoder. Här ligger fokus inte på dosuppskattningens precision utan på hastigheten. Det är viktigt att kunna på ett snabbt sätt sortera ut de drabbade som inte behöver omedelbar medicinisk hjälp och identifiera dem som måste behandlas. Det har visat sig att inte bara kromosomskador i lymfocyter duger som biologisk dosimeter utan även andra mätmetoder kan användas, till exempel analyser av genexpression. Samtidigt tillåter moderna bildanalysmetoder automatisk analys av kromosomskador, så att analysen inte längre är så tidskrävande som vid manuell analys.

Olika grupper i världen har valt olika strategier för att uppfylla ”high throughput” kravet. I USA satsar man på utveckling av helautomatiserade test som kan användas av vilket diagnostiskt laboratorium som helst, utan grundläggande kunskap i strålningsbiologi. Europa, Kanada och Japan går den andra vägen. Här har man bestämt sig för att skapa nätverk av specialiserade laboratorier som vid en stor händelse kommer att dela prover från drabbade personer och analysera dem parallellt. Det europeiska nätverket heter RENEB och information kan hittas under http://www.reneb.net/.

Ett problem är att de flesta europeiska länderna på grund av ekonomiska begräsningar inte finansierar och upprätthåller specialiserade laboratorier för biologisk dosimetri. RENEB:s filosofi är att testa och öva olika mätmetoder som används i laboratorier för att lösa olika forskningsfrågor med biologisk dosimetri (Wojcik et al. 2018 och Kulka et al. 2018). RNEB organiserar regelbundna övningar där bestrålade blodprover skickas ut till nätverket laboratorier för att testa precision dosuppskattningars precision. Just nu kör RENEB en övning med neutroner för att förberedda sig för en nukleär händelse. Planerad är också en gemensam övning med den europeiska dosimetrigruppen EURADOS (http://www.eurados.org/).

Vår kommentar: Kommittén för nukleära olyckor inom det europeiska transplantationsnätverket, EBMT/NAC, poängterar i sin checklista för klinisk handläggning av strålskadade patienter vikten av analys av blodvärden efter exponering (dvs differentialräkning av koncentrationen av blodceller, och särskilt lymfocyter) – åtgärder som i olyckssituationen lämpligen kombineras med någon eller några av det flertal möjligheter som tas upp ovan.

Beredskap är mer än en plan……..

I en artikel av John F. Koerner, 2018, beskrivs och diskuteras amerikanska regeringens befintliga planer för medicinsk beredskap vid en allvarlig radiologisk händelse (t ex sprängning av en ”hemmagjord” kärnladdning), tillvägagångssätt, metoder att bedöma operativa förmågor samt förslag på vägar fram till genomförande.
Författaren konstaterar att planerna inte räcker till. Beredskap kräver bevisbaserade överläggningar, vetenskapliga publikationer, övningar, integration av erfarenheter och än viktigare, genomförande. Mycket av den nya kunskapen som har utvecklats kan gå förlorad om den inte fångas i rigorösa vetenskapliga peer-review processer.

I artikeln konstateras att det finns fyra primära faktorer för att uppnå
beredskap för komplexa masskade-incidenter såsom en radionukleär händelse.
1) De måste vara genomförbara för insatser som ska genomföras av räddningspersonal och utsatta personer, vilket innebär att de är skalbara, flexibla, hållbara, bärbara och kostnadseffektiva.
2) Alla åtgärder måste vara baserade på bevis, kunskap och erfarenhet av att använda bästa tillgängliga kliniska, vetenskapliga och operativ information.
3) I en miljö med begränsad finansiering och konkurrerande krav, måste interventioner baseras på smartare sätt att använda befintliga möjligheter och bör helst förbättra dessa möjligheter.
4) Framgångar kräver partnerskap för att kunna utvecklas och implementeras.

I texten identifieras vissa kritiska funktioner som kan påverka hur bra vi hanterar utmaningar i samband med en nukleär händelse. Här beskrivs bla vikten av samordnad kommunikation, både intern och extern, för att påskynda spridning av folkhälsa och annan skyddande kommunikation. I en miljö av knappa resurser finns det beslutspunkter och medicinska beslut som är nödvändiga för att säkerställa tillgängligheten av den bästa vården för största möjliga antalet personer. Detta kommer att leda till det bästa hälsoutfallet för den totala befolkningen.

Det är viktigt att förstå att det finns en betydande beteendehälsopåverkan vid en katastrof som innebär strålning och masskadeförstörelse, att inte bagatellisera de psykiska hälsoeffekterna hos befolkningen och deras förmåga att följa vägledning.
Efter en nukleär detonation finns ingen sådan sak som ”worried well”. Varje enskild överlevande måste behandlas som ett potentiellt olycksoffer för trauma, strålskada,
och/eller psykiska hälsoeffekter, vilka kan förändras eller försvagas på kort eller lång sikt.
Författaren pekar på viktiga fakta som möjliggör eller omöjliggör medicinska motåtgärder. När man försöker att mäta den faktiska beredskapen finns det fortfarande en viss osäkerhet och det behövs en hel del arbete för att säkerställa att det finns korrekta mått på beredskap. När det gäller exempelvis den medicinska responsen på en nukleär händelse finns det flera påverkande faktorer som inte är folkhälsa eller strikt medicinska tex är terrängen och tiden lika viktiga som den medicinska vetenskapen. Det kan handla om koordinering av transporter, typ av kommunikation och effekten av denna samt graden av infrastrukturskador. När man väl beaktar alla dessa relevanta faktorer är det fortfarande nödvändigt att fatta medicinska beslut och ge omsorg i en medicinskt relevant tidsram.

Med erfarenhet av incidenter såsom olyckan i Fukushima Daiichi har framarbetats ett förslag på Integrerat kliniskt diagnostiksystem (Coleman and Koerner 2016, Fig 3), se bifogad länk. Systemet är tänkt att integrera tillgängliga förmågor och framtida förmågor för att genomföra hematologi, för att maximera potentialen för cytogenetik, och använda ny molekylär diagnostik. Man beskriver det som ett laboratorieövervakningsnätverk som ska använda befintliga funktioner och integrera nya möjligheter.

Vår kommentar: Artikeln diskuterar den amerikanska regeringens planer för medicinsk beredskap vid en nukleär händelse, men diskussionerna kring dessa kan anses allmängiltiga och viktiga även för andra länder. Återigen beskrivs kommunikation på alla nivåer som mycket viktigt. Man tar också upp vikten av att integrera fakta från olika områden för en säker medicinsk handläggning. Denna integration är tidsberoende, t ex när det gäller biodosimetri där provtagning vid en masskadehändelse troligen kommer igång så sent att vissa metoder inte fungerar. Det är här värt att poängtera vikten av klinisk dosimetri kopplad främst till kinetiken runt minskat antal lymfocyter och trombocyter. Integrationen kräver också en förståelse för att brist på resurser kommer att utvecklas och att det kommer att bli ett dynamiskt tillstånd beroende på geografi och tid efter detonationen.

Ny IAEA-guide: När upphör ett nödläge?

En av många utmaningar för myndigheter som förbereder sig för nukleära eller radiologiska nödsituationer handlar om avslutningen: När ska man formellt avsluta en nödsituation? Hur ska övergången till ett ”normalt” tillstånd bäst skötas, och är det ”normala” att det uppkommer en befintlig exponeringssituation (”omgivning med joniserande strålning” enligt svensk förordningsnomenklatur) eller att man återgår till en planerad exponeringssituation (”verksamhet med joniserande strålning”)? En ny säkerhetshandbok från IAEA, GSG 11, ger vägledning och rekommendationer om dessa viktiga och svåra frågor, för vilka det hittills inte funnits särskilt mycket internationella råd.

Handboken ger vägledning om ämnen som hur man bestämmer när man ska lyfta skyddsåtgärder som införts under nödläget, inklusive evakueringar och begränsningar av konsumtionen av lokala produkter. Den stöder nationella myndigheter i att utveckla arrangemang för sådana beslut som en del av deras övergripande beredskapsinsats. Texten innehåller både utförliga resonerande delar om problem och målkonflikter, och ganska ingående tekniska råd t ex om operativa åtgärdsnivåer (operational intervention levels, OIL). Fyra konkreta exempel presenteras också utförligt, nämligen Fukushima-olyckan och Goîania-händelsen som båda genererade befintliga exponeringssituationer samt Paks-transportolyckan och Hueypoxtla-stölden av en terapistrålkälla, vilka båda slutade med återgång till en planerad exponeringssituation.

Med denna handbok underlättas genomförandet av kraven i IAEA:s ”Safety Standards” GSR 7 om beredskap och GSR 3 om strålsäkerhet. Utbildningsmaterial om GSG 11 kommer att publiceras under kommande månader.

Vår bedömning: Handboken avser att avhjälpa en skriande brist på vettiga råd. Efter såväl Tjernobyl som Fukushima har det uppstått besvärliga problem både med att rent formellt avgöra att ett nödläge upphört, och med att hantera den uppkomna ”befintliga” exponeringssituationen. Den Internationella strålskyddskommissionen, ICRP, hade strax före Fukushima i sin Publikation 111 tagit upp dessa frågor, men har sedan konstaterat att ytterligare och delvis modifierad vägledning uppenbarligen behövdes. Arbete med att uppdatera ICRP-rapporten pågår, och det är på ett sätt synd att IAEA fullföljt den här handboken utan att invänta ICRP som kan arbeta friare än IAEA. Å andra sidan är behovet av råd verkligen stort och med tanke på risken för kommande nukleära och radiologiska händelser ska vi nog vara tacksamma att IAEA slutfört sitt arbete så snabbt, och därigenom inte har låtit det bästa bli det godas fiende.

Presentationer och videos från NKS Fukushima-seminarium i januari 2016

NKS (Nordic Nuclear Safety Research, tidigare Nordisk Kärnsäkerhetsforskning) genomförde 12-13 januari 2016 ett utmärkt seminarium om ”Nordic perspectives of Fukushima: Where are we now and where do we go?”, med inbjudna gästtalare från ICRP, IAEA och OECD/NEA och presentationer av arbete som genomförts med stöd av NKS och planer för framtiden.

Presentationerna, alltså PowerPointbilderna, finns att ladda ner på
www.nks.org/en/news/nks-fukushima-seminar-12-13-january-2016-in-stockholm.htm
och videofilmer där man kan höra och se hela presentationerna finns på
http://www.nks.org/en/seminars/presentations/nks-2016-seminar-videos/

Bayesisk analys av cytogenetisk biodosimetri

Med klassisk sannolikhetsanalys kan man besvara frågan: Givet en viss hypotes, hur sannolikt är ett visst utfall? Ofta används resultatet för att bedöma hypotesen; om det erhållna utfallet är mycket osannolikt förkastar man sin ”nollhypotes” och söker en annan hypotes som bättre förklarar utfallet. En Bayesisk analys ställer i stället frågan: Givet ett visst utfall, hur sannolik är en viss hypotes, med hänsyn taget till dess sannolikhet a priori?

Biologisk dosimetri med cytogenetiska metoder (t ex att räkna dicentriska kromosomer eller mikrokärnor) brukar analyseras med klassiska metoder som kan leda fram till ett konfidensintervall (”sannolikheten är 95% att intervallet från x till y täcker den sanna frekvensen kromosomskador”). Det finns vedertagna procedurer, en IAEA-manual och t o m en ISO-standard för analysen. Men alltfler analytiker föreslår numera i stället en Bayesisk analys (”kromosomskador är sannolikhetsfördelade och 95% av fördelningen ligger mellan x och y”). Med vissa enkla idealiserade förutsättningar blir beräkningsresultaten desamma, men den Bayesiska analysen utgår från den biologiskt rimligare ansatsen att kromosomskador uppkommer stokastiskt. Den Bayesiska analysen tar också redan från början hänsyn till osäkerheter, och tidigare erfarenheter beaktas i form av a priori-sannolikheten. I en review-artikel nyligen, Radiat. Prot. Dosim. 162(2014)185-196, presenterades de två statistiska angreppssätten utförligt, inklusive ett genomräknat exempel, och läsarna erbjöds tillgång till att pröva ett nytt dataprogram för ändamålet. En tidigare invändning mot Bayesisk analys i biodosimetri efter misstänkta bestrålningsolyckor, att de ofta omfattande beräkningarna skulle bli alltför tidsödande, är alltså kanske inte längre relevant.

Läkemedel mot sena strålskador: Kan det fungera?

Det finns ett antal olika medikamenter mot akuta skador efter höga stråldoser, både för profylax och för behandling efter bestrålning. Som vi nämnt i tidigare notiser om dylika preparat har de ingen plats i allmänna strålskyddssammanhang; de kan ibland ha relevans för att reducera biverkningar vid strålbehandling eller för enstaka olycksoffer med verkligt höga doser. En ny review-artikel  behandlar möjligheten att även minska risken för sena strålskador.

Författarna konstaterar att det visserligen finns diverse läkemedel som bedöms generellt reducera risken för cancer, men att deras effekt på strålningsinducerad cancer är föga känd och skulle vara svår att studera i kliniska prövningar. I ett scenario med en stor kärnteknisk olycka eller en radiologisk terrorhandling kommer merparten av den berörda populationen att ha fått mycket låga eller inga doser, vilket medför höga krav på att en eventuell behandling inte har skadliga bieffekter och inte är orimligt dyr.

Det är förstås ändå önskvärt att utveckla läkemedel mot sena strålskador. Författarna nämner som en första prioritet att söka efter biomarkörer för strålningsinducerade skador. En viktig strategi bedöms vara att särskilt följa personer med känt hög risk för cancer (t ex kvinnor med muterad bröstcancergen BRCA1, vilket även ger ökad strålkänslighet). Livsstilsrådgivning om t ex rökning, diet och motion kan också signifikant minska cancerrisken och därmed kanske kompensera för en strålningsinducerad risk. I den mån läkemedel mot sena strålskador kan utvecklas är det också rimligt att tro att dessa kan vara användbara även i generell cancerbehandling.

Åtgärder när huden kontaminerats

Stora olyckor som Fukushima aktualiserar alltid frågor kring kontaminering av huden med radioaktiva ämnen, men detta är också en risk som förekommer vid vardagliga incidenter på nuklearmedicinska kliniker, forskningslaboratorier och industrier. Personer som utsatts för detta bör dekontamineras så snart som möjligt genom tvättning med vatten och produkter som kan bidra till att avlägsna kontamineringen, men utan att skada huden. Det kan låta enkelt och självklart men det finns en hel del praktiska problem. En sammanställning av Tazrart m fl visar att många av de produkter som rekommenderas för användning tillsammans med rinnande vatten är irriterande eller rentav giftiga. Det kan inte uteslutas att en del av dem kan skada huden, med potentiellt betydligt värre inre kontamination som möjlig följd. De flesta av de produkter som rekommenderas kan helt enkelt inte användas om man inte har riklig tillgång till rent vatten.

 En särskild komplikation är att inte ens den oskadda huden utgör en absolut barriär mot genomträngning av radioaktiva ämnen. Det är t ex känt att lösliga uranföreningar kan passera genom oskadd hud inom ca 30 minuter. G Phan m fl har med goda resultat prövat calixaren, ett aktinidspecifikt kelatmedel (chelating agent), i en olje-vattenemulsion byggd på kommersiella kosmetiska produkter. Calixaren minskade urangenomträngningen i grisöronhud med 87% i 24-timmarsprov, vilket var en betydande förbättring jämfört med referensprodukterna EHBP (50%) och DTPA (55%), och framstår alltså som en lovande behandlingsmöjlighet när huden kontaminerats med lättdiffunderande uranföreningar.   

Samordningsmöte med WHO-REMPAN

Världshälsoorganisationen WHO inrättade 1987, till följd av Tjernobyl, ett internationellt Radiation Emergency Medical Preparedness and Assistance Network, REMPAN, där den svenska representanten är Centrum för strålningsmedicin (CSM, där KcRN utgör en viktig funktion). Ett stort internationellt samordningsmöte genomfördes i februari 2011 i Nagasaki i Japan. Att lokala och internationella experter på det sättet just hade fått en aktuell genomgång har säkerligen bidragit till en välavvägd medicinsk hantering av Fukushima-olyckan som inträffade kort efteråt. En rapport från mötet finns nu, visserligen försenad av Fukushima, som ett specialhäfte av Radiation Protection Dosimetry.