Kurs i medicinsk handläggning av radionukleära händelser, Stockholm 2017-10-04–06

Karolinska Institutet och Socialstyrelsen erbjuder i samarbete med FoUUi, Södersjukhuset, och i samverkan med WHO-REMPAN och EBMT, en ”5th International Expert Course on the Medical Management of Radiological and Nuclear Events” i Stockholm 4-6 oktober 2017. KcRN är praktisk kursledning. Kursen vänder sig främst till läkare; annan berörd sjukvårds- och ”blåljus”-personal är också välkomna i mån av plats.

Närmare upplysningar ges i denna flyer. Sista anmälningsdag 15 juni!

 

Den senaste UNSCEAR-rapporten (”2016”)

FN:s expertkommitté UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation) lämnar med jämna mellanrum rapporter till FNs generalförsamling kring källor, biologiska och medicinska effekter samt hälsorisker p g a joniserande strålning. Rapporterna gäller både globala och individuella exponeringar. 2016 års UNSCEAR-rapport (som kom ut under våren 2017) har fokuserat kring strålning som genereras av elproduktion men också frågor kring risker med vissa radionukleider såsom tritium och uranisotoper.

Intressant nog noterar man att strålexponering av allmänheten till följd av verksamheten vid kärnkraftverk bara är en mindre del av det som kommer från t ex kolkraftverk. Uppdateringen av detta är viktig eftersom den närmast föregående rapporten om elproduktion publicerades för så länge sedan som 1993. De nya analyserna bygger på nya beräkningsmodeller vilket bättre speglar de olika elektricitetsgenererande teknologiernas bredd. Dessutom har man re-evaluerat arbetsmiljöaspekten för olika elgenererande teknologier genom att använda elektroniska dosimetriregister från yrkesexponerade. De former av elkraftsproduktion som jämförts inkluderar kärnkraft, kol, gas, olja, biobränsle, geotermisk kraft, vind och solkraft. Generellt är den kollektivdos av joniserande strålning som uppstår låg men intressant nog bidrar kolkraft till mer än hälften av den totala stråldosen till den globala populationen. Kärnkraften genererade bara 1/5 av detta. Kollektivdosen från kolkraftverk uppgår till 670-1400 man Sievert medan den från kärnkraft generar 130 man Sv. Det geotermala tillskottet är 5-160 man Sv, det från gas 55 man Sv och det från olja 0,03 man Sv.

Bedömningen är också att över en period av flera hundra år då mycket små doser av långlivade radionukleider ackumuleras resulterar detta i större kollektivdoser från kärnkraftsproduktionen men ändå kommer kolkraftverken att generera högre doser än vad som orsakas av kärnbränslecykeln.

Det noterades också att det är svårt att direkt jämföra exponeringen från allvarliga kärnkraftsolyckor (Tjernobyl och Fukushima) med de från rutinutsläppen. UNSCEAR- rapporten pekar på att kollektivdosen till den globala populationen orsakad av allvarliga olyckor är flera ggr högre än kollektivdosen från ett års normalproduktion av alla elproduktionsformer sammantagna. Dessutom är också distributionen av doser efter en olycka mer begränsad geografiskt.

I 2016 års volym behandlas också den biologiska effekten av internt deponerade radionukleider. En intressant aspekt på riskestimaten av dessa är att det mesta av riskberäkningarna från intern exposition baseras i modeller på data från extern exposition. Fokus i rapporten rör tritium- och uran-radionukleider. Tritium (3H) ger lågenergetisk betastrålning. För närvarande är ackumuleringen i näringskedjan den viktigaste omgivningsfaktorn att notera ur risksynpunkt. Ett flertal epidemiologiska studier har genomförts både inom vissa yrkeskategorier och bland allmänheten, men dessa har inte visat ngn ökad frekvens cancer. UNSCEAR pekar visserligen på osäkerheter rörande t ex kinetik för biokemiska tritiumföreningar och RBE för tritiums betastrålning, men bedömer ändå att strålningsrisken med tritium inte torde vara allvarligt underskattad i vedertagna bedömningar (=i praktiken ICRPs estimat).

Uran är ett naturligt förekommande element och distribuerat i miljön. Det finns 3 naturligt förekommande isotoper: 234U, 235U och 238U. De genererar huvudsakligen alfastrålning och har lång halveringstid. Vanligen sker expositionen naturligt via dricksvatten och födoämnen. Epidemiologiska studier av arbetare som exponerats har visat en svag korrelation mellan exposition från uran och lungcancer men inget kausalsamband har visats. Inte heller hos militär personal har några samband kunnat fastställas. Detta är ej heller förväntat med tanke på de låga exponeringsnivåer det handlat om. Bilden kompliceras ytterligare av uranets kemiska toxicitet.

För beräkningar av intern dos används biokinetiska modeller framför allt för inhalation och oralt intag. Dessa modeller behöver förfinas, bl a för att öka förståelsen av hur olika kemiska föreningar deponeras i vävnader. UNSCEAR rekommenderar fortsatta analyser och forskning kring dessa frågor.

Vår bedömning: Som alla UNSCEAR-rapporter är detta ett standardverk som under många år kommer att vara den främsta källan till information om joniserande strålning och dess effekter. Uppgifterna om stråldoser p g a elproduktion är ytterst välkomna med tanke på den långa tid som gått sedan föregående rapport om ämnet.

I fråga om intern bestrålning finner vi resonemangen om tritium särskilt intressant eftersom det tidvis har hävdats att ICRPs viktningsfaktor för betastrålningen från tritium, 1, kanske underskattar riskerna med tritium då vissa experiment tyder på att RBE för denna strålning kan vara ca 2 (se här för en diskussion om detta). UNSCEAR-rapporten vidareutvecklar analysen, noterar att det fortfarande inte finns någon epidemiologisk evidens för en sådan överrisk och konkluderar att ytterligare studier är påkallade.

Aktuella restriktioner för radionuklider i mat i Japan

I en reviewartikel i Health Physics Society går Kazuki Iwaoka igenom de gränser för radionuklider i livsmedel (ffa 134Cs och 137Cs) som satts efter kärnkraftsolyckan i Fukushima. Närmast direkt efter olyckan (17:e mars 2011) antogs restriktioner för mat och dryck. Gränsen för dricksvatten, mjölk och mjölkprodukter sattes till 200 Bq/kg medan gränsen för grönsaker, kött, ägg, spannmål mm sattes till 500 Bq/kg. I april 2012 uppdaterades dessa av MHLW (= hälsovårdsministeriet i Japan) till 10 Bq/kg för dricksvatten (motivering: hög konsumtion samt livsviktigt), mjölk 50 Bq/kg (motivering: konsumeras ofta mycket vid unga år), mat till barn yngre än 1 år 50 Bq/kg samt mat som inte faller inom någon av dessa kategorier, 100 Bq/kg. Dessa härledda gränser för aktivitetskoncentration är satta med avsikten att den totala effektiva dosen från radionuklider (inkluderande 134Cs, 137Cs, 90Sr, 238 Pu, 239 Pu, 240 Pu, 241 Pu och 106 Ru) inte skall överskrida 1 mSv/år. Undersökningar 1-2 år efter olyckan visar att överskridande av dessa gränser sker i <1% fallen och att effektiva doser av radioaktivt Cesium (134Cs, 137Cs) i mat har uppmätts till <0,01 mSv. Även Gilmour et al har gått igenom denna fråga och presenterade liknande uppgifter i PLOSone i början av mars 2016.

Vår bedömning: Dessa artiklar belyser handläggningen för att minimera den interna kontamineringen efter Fukushima Daichii olyckan samt bakgrunden till satta gränser för aktivitetskoncentration. De japanska gränsvärdena har satts betydligt mer restriktivt än internationella överenskommelser. T ex EU har för nuklider med mer än 10 d halveringstid, i synnerhet Cs-134 och Cs-137, 400 Bq/kg för spädbarnsmat och 1000 Bq/kg för mejeriprodukter (för import) av livsmedel från Japan gäller dock japanska gränsvärden, EU accepterar alltså inte att ta emot ”sämre” varor än de som erbjuds japanska konsumenter). De gränsvärden som tillämpas i dagsläget i Sverige och som instiftades efter Tjernobylolyckan för Cs-137 är: 1500 Bq/kg (kött av ren och vilt, insjöfisk, vilda bär och svamp samt nötter) samt 300 Bq/kg (för övriga livsmedel) (livsmedelsverket).

Gränsvärdena är genomgående satta med avsikten att konsumenten inte skall kunna få i sig >1 mSv per år via födan (SSM). Man tycks i Japan alltså ha valt en orealistiskt pessimistisk modell av dosen till följd av en viss mängd radionuklider i livsmedel. Det är därför inte förvånande att de japanska restriktionerna har lett till väsentligt lägre doser än den ansatta nivån 1 mSv/år. Sannolikt har handelspolitiska överväganden påverkat gränssättningen.

HFMEA (healthcare failure mode and effects analysis) vid strålbehandling – ny review

Strålbehandling är en viktig behandlingsmetod vid cancersjukdomar. Vid planeringen och under strålbehandlingen finns dock avancerade och komplicerade medicinsk-tekniska processer som, om de på något sätt går fel, kan utsätta patienter för risker. Tidigare analyser av ”felaktigheter” vid strålbehandling har visat att 70% av dessa incidenter orsakas av bristande eller felaktiga standardförfaranden eller bristfällighet i följsamhet av dessa standardförfaranden. Dessvärre kan det vara svårt att utvärdera och förebygga dessa misstag och The American Society of Radiation Oncology (ASTRO) har därför designat ett nytt dokument för att kunna tillmötesgå krav som ställs på en modern strålonkologisk avdelning och bygger på HFMEA (Healthcare Failure Mode and Effects Analysis), feleffektsanalys inom vården). HFMEA är en kvalitativ metod för riskanalys och anpassad till organisationer inom hälso- och sjukvård. Den grundar sig på FMECA (Failure mode, Effects analysis and Criticality analysis) vid vilken man identifierar potentiella händelser, gör en grundorsaksanalys samt prioriterar misstag och utvärderar hur dessa kan rättas till.

Giardina och kolleger har i en review från 2016 gått igenom publicerade analyser på HFMEA inom medicinsk strålbehandling. I artikeln beskrivs metodologin för HFMEA samt hur detta leder fram till ett ”risk priority number” (RPN) som baseras på sannolikheten att händelsen kommer att inträffa (=Occurrence index = O), hur allvarlig konsekvenserna av händelsen blir (=severity index=S) samt sannolikheten att händelsen kommer att upptäckas innan den inträffar (=detection index=D).

Formel: RPN = O * S * D

I dagsläget finns ingen säker anvisning vid vilken nivå på RPN där man måste vidta åtgärder. Författarna refererar noggrant metodologin till genomförda studier på HFMEA på strålbehandlingsområdet (ca 7 stycken publicerade mellan 2009-2014). Man påpekar och diskuterar även ingående svagheter med HFMEA inom detta område t ex avsaknad av validering, att metoden bygger på subjektiva värderingar/erfarenheter, svårigheten att sätta exakta siffror för O, S och D, det faktum att mänskliga misstag är svåra att ta hänsyn till på ett adekvat sätt samt att HFMEA tittar på enskilda misstag, ej på multipla händelser eller vanligt förekommande scenarier. Vid jämförelse av de olika studierna framkommer även att olika studier har använt sig av olika skalor för O, S och D vilket gör att det är svårt att få en sammantagen, väl avvägd bild. Författarna föreslår att detta skulle kunna göras genom att integrera HFMEA-metodiken med den från  probabilistiska metoder som felträdsanalys, Fault Tree Analysis (FTA) eller händelseträdsanalys, Event Tree Analysis (ETA).

Vår bedömning är att artikeln lyfter en viktig fråga hur vi inom strålbehandlingen ska undvika onödiga misstag. Författarna presenterar även grundligt metodik och studier på ämnet, men det är dock något svårt att ur denna review förstå hur tillämpningen av metoden bör ske på bästa sätt. Liksom tidigare nämnts är troligen validering av metoden av stor betydelse. Säkerhetsfrågor i strålbehandling analyseras och diskuteras i IAEA:s rapportsystem SAFRON (Safety Reporting and Learning System for Radiotherapy) och dess värdefulla ”Newsletters”.

Stråldoser vid pediatriska undersökningar/interventioner i kardiologi – en review

Vi har under flera inlägg tidigare rapporterat om stråldoser från medicinska undersökningar, den därav ökande kollektiva stråldosen till populationen samt stokastiska risker som följd av dessa undersökningar. Eftersom barn dels har en längre livslängd under vilken strålinducerade maligniteter kan utvecklas, dels betraktas som extra känsliga, försöker man särskilt vinnlägga sig om att begränsa stråldoser till unga individer. I en reviewartikel i Journal of Radiological Protection i december 2016 har Harbron et al gått igenom vetenskaplig litteratur (publicerad år 2000 – mars 2016) som rör dosimetri av kardiologiska interventionella ingrepp (interventional cardiology procedures = ICP) med primärt fokus på barn och unga vuxna.

Vid ICP katetriseras hjärtat och som guide under ingreppet använder man sig av genomlysning med fluoroskopi för att erhålla bilder på kamrar och valv i hjärtat samt omgivande blodkärl. Allt fler ingrepp utförs nu på barn eftersom metoden vid många medfödda hjärtsjukdomar erbjuder ett icke-invasivt och relativt komplikationsfritt ingrepp i jämförelse med kirurgi. Författarna i artikeln påpekar dock att pga ingreppens komplexitet kan stråldoserna bli höga och att vissa hjärtsjukdomar kan kräva upprepade ICP under de första levnadsåren. I Harbrons artikel har författarna därför gått igenom 36 publicerade studier sedan år 2000 och registrerat antalet undersökningar, ålders/viktspann, typ av ingrepp, PKA (kerma area product som även refereras som DAP=dose area product), fluoroskopitid (FT), och där det angivits, ”air kerma”, effektiv dos och organ doser. Air kerma syftar till att ge en ungefärlig uppgift om dos till huden, men det finns fallgropar med denna approximation (ej korrektion för bordsattenuering, felaktig uppskattning om multipla fält används). Syftet med sammanställning var att summera data över ämnet samt att beskriva och förklara diskrepansen i dos mellan de olika studierna.

PKA låg generellt inom 1-100 Gy*cm2, men varierade stort mellan studierna och även mellan utförda ingrepp. Utifrån samtliga studier kan man se att högsta doserna erhölls vid dilatation av utflödet från höger kammare (right ventricular outflow tract =RVOT) (139 Gy*cm2) och vid angioplastik av arteria pulmonalis (pulmonary artery angioplasty) (1,5-35 Gy*cm2), samt lägst för hjärtbiopsier (0,3-10 Gy*cm2 för alla åldrar kombinerat) och förmaksseptostomier (öppning av septum mellan förmaken) (0,4-4,0 Gy*cm2). FT var inom spannet 5-20 min. Vidare kunde man notera att det var en stark trend för ökande PKA med ökande vikt/ålder på patienten. Effektiv dos låg generellt sett mellan 3-15 mSv. Däremot uppskattades organdoser endast i 9 studier; organdoserna var generellt sett <20 mGy och de organ som fick de högsta doserna utgjordes av lunga, hjärta, matstrupe och bröst. Doser till benmärg var låga, 1-3 mGy för nyligen genomförda undersökningar.

Jämförelse mellan PKA från olika undersökningar och utrustning samt med olika ålder på patienter kan vara problematiskt och fynden i denna studie pekar på en stor variation i stråldoser som patienterna erhållit. Författarna diskuterar i artikeln ingående orsakerna till detta; differens i ålder på inkluderade patienter i de olika studierna (ökning av PKA kan ses både med ökande ålder och ökad vikt på patienten), olika ingrepp, skillnader i utrustning, osäkerheter i mätningen. Däremot ses ingen klar trend mellan PKA eller FT och datum när undersökningarna utförts. Författarna kommenterar även att risk hos barn bäst uppskattas av uppskattade ekvivalenta doser till individuella organ kombinerat med ålders-, köns-, och organspecifika riskkoefficienter (få publicerade från ICP i nuläget). Riskkoefficienter för benmärg och sköldkörtel som idag finns, pekar på relativt låga doser till dessa organ.

Vår kommentar till denna studie är att den är mycket välarbetad, intressant och aktuell med bakgrund av det faktum att stråldoserna från dessa undersökningar/interventioner inte minskat över tid trots den ökade medvetenheten om strålskydd. UNSCEAR:s senaste rapport om patientdoser (2008) behandlar pediatrisk radiologi rätt kortfattat och Harbron-studien ger en väsentligt bättre kunskap än tidigare. Förklaring för de stora variationerna  i PKA mellan olika studier diskuteras ingående och djuplodande av författarna, vilket bidrar till förståelsen för den komplexa situationen och svårigheten att tolka data från en individuell studie. Ur klinisk synvinkel är den centrala frågan hur stor inverkan stråldosen får på utfallet hos patienterna och huruvida man kan minska stråldoserna till dessa patienter genom exv fortlöpande utbildning i strålskydd hos personalen, långsiktig planering av ingrepp som skall genomföras, tillämpning av ALARA-principen samt vidareutveckling av olika imagingmetoder/interventioner för att bibehålla en hög bildkvalitet med reducerad stråldos.